Pushing the limits of variable selection with external data

David Rossell Universitat Pompeu Fabra & Barcelona School of Economics

Work 1 (COVID19): Jack Jewson, Li Li, Laura Battaglia, Stephen Hansen & Piotr Zwiernik Work 2 (Theory): Paul Rognon-Vael & Piotr Zwiernik Work 3 (Methods): Miquel Torrens and & Omiros Papaspiliopoulos

OBayes 2025, Athens

Motivation

High-dimensional variable selection (large p) requires strong assumptions if consistent recovery is desired as $n \to \infty$

- Sparsity (bound on truly active variables)
- Smallest signal (betamin conditions)
- Correlation between covariates (eigenvalue conditions)

External information often available \Rightarrow variables not exchangeable a priori

- Biomedicine: gene annotations, clinical history vs genomic markers
- Transfer learning: findings in related problems/populations (e.g. cancer type)
- Causal inference: variables highly correlated with treatment are special
- ...

Abundant work showing empirical gains from data integration. Theory lacking

Graphical model application

Question: in what counties did COVID19 evolve in a coordinated manner? Is co-evolution related to social media, geographical distance and number of flights?

Data: weekly infection rates 01/2020 - 11-2023 (n=97 weeks) for p=332 USA meta-counties

Regress log-infection rate on vaccination, containment measures, pop density, temperature, time & county fixed effects, AR1 term

- Model explains 90% of variance ($R^2 = 0.9$)
- Large residual partial correlation across some counties, i.e. COVID rates systematically higher/lower than predicted

COVID. Fitted model

Regress partial correlations onto network data: Facebook, distance, flights

- Model selection: what partial correlations are 0? Prob of 0 vs. networks?
- Estimation: partial correlations? Their mean / variance vs networks?

Facebook index

1/geographical distance

Goal: study theoretical benefits of external info for variable selection.

- Relax signal strength or sparsity assumptions
- Improve model selection consistency rates

Consider linear regression with many covariates

$$y = X\beta^* + \epsilon$$

where $\epsilon \sim \textit{N}(0, \sigma^2\textit{I})$, X is $\textit{n} \times \textit{p}$, and wlog $\sigma^2 = 1$

Goal: variables with non-zero effect, when $p \gg n$?

Outline

- The theory
- 2 The methods
- An application

Key idea: block-informed variable selection

- Partition variables into blocks using external data.
- Variables in less sparse or stronger signal blocks penalized less.

$$\beta^* = (\underbrace{\beta_1^*, \ldots, \beta_{|B_1|}^*, \underbrace{\beta_{|B_1|+1}^*, \ldots, \beta_{|B_1|+|B_2|}^*, \ldots}}_{\text{Block 1 less sparse}})$$

Key idea: block-informed variable selection

For simplicity we consider L_0 penalties.

$$\hat{S} = rg \max_{M} \left\{ \ell(y; \hat{eta}_{M}) - \sum_{j=1}^{b} \kappa_{j} |M_{j}|
ight\}$$

 ℓ : log-likelihood; \hat{eta}_M : MLE for model M; κ_j : penalty for block $j=1,\ldots,b$

For example, BIC corresponds to $\kappa_1 = \ldots = \kappa_b = \log(n)$

Theory applies directly to Zellner's prior on β_M and Binomial or Beta-Binomial priors on models. Therein, we'd let prior inclusion prob depend on the blocks

Intuition: conditions for consistent recovery

To attain $P(\hat{S} = S) \to 1$ as $n \to \infty$, we essentially need

Standard L0:
$$\sqrt{\log(p-s)} \leq \sqrt{\kappa} \leq \sqrt{n\rho(X)}\beta_{\min} - \sqrt{\log(s)}$$

Block L0: $\sqrt{\log(p_j-s_j)} \leq \sqrt{\kappa_j} \leq \sqrt{n\rho(X)}\beta_{\min,j} - \sqrt{\log(s_j)}$

 $p_j=$ size of block j; $s_j=$ number of non-zeroes; $s=\sum_{j=1}^b s_j.$ $\beta_{\min,j}=$ smallest non-zero $|\beta_j|$ in block j; $\rho(X)=$ smallest eigenvalue related to X_S

If range of feasible κ or κ_i empty, consistent recovery is not possible

- Standard L0: narrow window when s and p-s are large.
- Smaller p_j , larger $\beta_{\min,j} \Rightarrow$ easier support recovery.

Summary of oracle results

If an oracle sets optimal penalties κ and κ_j

- There are settings where consistent selection possible for block L0, but impossible for standard L0
- ullet When both are consistent, block L0 has better rates for $P(\hat{S}=S)$
- Tight bounds shown for both sequence model and regression

Smallest recoverable signals

$$\begin{array}{l} \text{Standard L0: } \beta_{\min} \asymp \sqrt{\frac{2\log(p-s)}{n}} + \sqrt{\frac{2\log(s)}{n}} \\ \text{Standard L0: } \beta_{\min,j} \asymp \sqrt{\frac{2\log(p_j-s_j)}{n}} + \sqrt{\frac{2\log(s_j)}{n}} \end{array}$$

Illustration

Scenario	1 (midly informative)	2 (strongly informative)	3 (uninformative)
s_1, s_2	1.5 log <i>n</i>	1.5 log <i>n</i>	1.5 log <i>n</i>
p-s	n	$e^{n/10}$	n
$p_1 - s_1$	\sqrt{n}	n^2	n/2

Ratio of error prob block/standard

Outline

- The theory
- 2 The methods
- 3 An application

Bayesian framework

Empirical Bayes method (aka non-oracle) achieves the theoretical improvements

Let's switch to a (more general) Bayesian formulation

- Variable inclusion indicators $\gamma_j = I(\beta_j \neq 0) \sim \text{Bern}(\pi_j)$
- Spike and slab $\beta \mid \gamma \sim \prod_{\gamma_i=1} N(\beta_j; 0, g)$
- Meta-covariates $w_j \in \mathbb{R}^q$ for variable j (extends the block idea)

Model prior inclusion probabilities as

$$\mathsf{logit}(\pi_j) = w_j^T \theta$$

ldea used by many, e.g. van de Wiel, Te Beest & Münch. Scand Journ Stat 2018 & references therein

Empirical vs. full Bayes

We consider empirical Bayes. Posterior model probabilities

$$p(\gamma \mid y, \hat{\theta}) \propto p(y \mid \gamma)p(\gamma \mid \hat{\theta})$$
$$\hat{\theta} = \arg \max_{\theta} p(y \mid \theta)$$

We use data twice, but $p(\gamma \mid \hat{\theta})$ learns for data (e.g. improved consistency with external data)

Compare to full Bayes, setting a prior $p(\theta)$.

$$p(\gamma \mid y) \propto p(y \mid \gamma)p(\gamma)$$
$$p(\gamma) = \int p(\gamma \mid \theta)p(\theta)d\theta$$

Learning θ doesn't help model selection. All that matters is marginal prior $p(\gamma)$

Example: no meta-covariates. If $\pi \sim \text{Beta}(a,b)$ then $p(\gamma) = \text{Beta-Binomial}(\gamma; a,b)$ (Scott & Berger AOS 2006). Data plays no role in $p(\gamma)$

EBayes solution

Issue in obtaining $\hat{\theta}$: the marginal likelihood is a sum over 2^p models

$$\hat{\theta} = \arg\max_{\theta} p(y \mid \theta) = \sum_{\gamma} p(y \mid \gamma) p(\gamma \mid \theta)$$

Proposition

Under our specified priors, we can evaluate gradient at linear cost in p

$$\nabla_{\theta} \log p(y \mid \theta) = \sum_{i=1}^{p} w_{i} [P(\beta_{i} \neq 0 \mid y, \theta) - P(\beta_{i} \neq 0 \mid \theta)]$$

- ullet Gradient evaluation requires an MCMC run at each heta
- ullet Analogous expectation-propagation algorithm requires a single run (at heta=0)

Interpretation

Setting gradient to 0 gives a fixed-point equation.

Illustration: suppose that w_i defines b blocks

$$\sum_{i \in B_j} P(\beta_i \neq 0 \mid \theta) = \sum_{i \in B_j} P(\beta_i \neq 0 \mid y, \theta)$$

A simple algorithm

- Set I = 0, $\theta^{(0)} = 0$ (uniform prior $p(\gamma)$ on models)
- ② For block b, $\hat{\pi}_b = \frac{1}{\rho_j} \sum_{i \in B_j} P(\beta_i \neq 0 \mid \theta^{(l)})$
- **3** Set $\theta_b^{(I)}$ matching $\hat{\pi}_b$ (inverse logit)
- **9** Set l = l + 1, go back to 2 until convergence

Outline

- The theory
- 2 The methods
- An application

An easy problem?

Goal: Effect of T treatments on outcome, adjusting for J controls.

Consider GLM $y_i \sim p(y_i \mid \eta_i, \phi)$ for i = 1, ..., n with linear predictor

$$\eta_i = \sum_{t=1}^T \alpha_t \mathsf{d}_{i,t} + \sum_{j=1}^J \beta_j x_{i,j}$$

- $\alpha = (\alpha_1, \dots, \alpha_T)$: treatment effects
- $\beta = (\beta_1, \dots, \beta_J)$: control coefficients
- ϕ dispersion parameter (e.g. σ^2 for Gaussian outcomes)

Focus is on $J \gg n$, fixed T. Issues

- Standard high-dimensional methods. Often run into under-selection
- Fixes to avoid under-selection. Often run into over-selection

Standard high-dim methods (LASSO, BMS etc) usually assume

- Sparsity
- ② All controls to be treated equally (exchangeable)

For finite n, sparsity can lead to under-selection, specially if controls correlated with treatment

Example.
$$T = 1$$
, $J = 49$, $n = 1000$, errors $\sim N(0, 1)$

- Truly $\alpha^*=1$, $\beta_1^*=\ldots,\beta_6^*=1$, rest truly zero
- Treatment correlated with Controls 1-6 (full confounding)

	d	x_1	x_2	<i>X</i> 3	<i>X</i> ₄	<i>X</i> 5	<i>x</i> ₆	<i>X</i> ₇	 X49
У	✓	√	√	√	√	✓	√	-	 -
d		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-	 -

BMA (default Zellner and BetaBin(1,1) priors) includes treatment but no controls DML/BAC are causal inference methods to avoid omitted variables BMA-EBayes (our method) learns that there's high confounding

Fix: encourage including controls that are correlated with the treatment

- Double LASSO (Belloni, Chernozhukov, Hansen, Rev Econ Stud 2014)
- Bayesian Adjustment for Confounders (Wang, Parmigiani, Dominici Biometrics 2012)
- ...

Theorem: DLASSO's $\hat{\alpha}_t$ is asymptotically Normal :-)

- Prevents omitted variable biases. Relevant under high confounding between treatment-controls
- May over-select ⇒ variance inflation. Relevant under low confounding

Extended example

Same, but now treatment correlated with Controls 7-12 instead of 1-6

Empirical Bayes

Idea: learn from data whether there's high/low confounding (or neither)

Let $w_j \in \mathbb{R}^T$ measure association between control j and T treatments, e.g. regression coef. of treatment on controls

Method: regress inclusion prob on w_j , e.g. $logit P(\beta_j \neq 0) = w_j^T \theta$

Def. Confounding coefficient for treatment t (κ_t): correlation between w_j 's and true inclusion ($\beta_j \neq 0$)

Prop. EBayes estimate (argmax of marginal likelihood) matches the prior and posterior expectation of κ_t

$$E(\kappa_t \mid \hat{\theta}) = E(\kappa_t \mid y, \hat{\theta})$$

Example

Prior inclusion prob vs. control's association with treatment (w_j) . Note that the marginal likelihood fit can be a bit "aggressive"

No confounding

Final thoughts

Integrating external data is very Bayesian. One can push the mathematical limits for model recovery

- Milder sparsity/betamin conditions, faster rates of support recovery
- Empirical Bayes method achieves practical gains
- Empirical findings in many applications support the idea

Alas, full Bayes cannot attain the gains (unless prior matches the truth)

Computation is feasible

Broader implications

- Parameter estimation
- Control of false discoveries in multiple testing
- Transfer learning

Main references

- · Jewson, Li, Battaglia, Hansen, Rossell, Zwiernik. Graphical model inference with external network data. Biometrics 2024
- \cdot Rognon-Vael, Rossell, Zwiernik. Improving variable selection properties by using external data. arxiv 2502.15584 (2025)
- · Torrens, Papaspiliopoulos, Rossell. Confounder importance learning for treatment effect inference. Bayesian Analysis 2025

Funding

- \cdot Europa Excelencia EUR2020-112096 by the AEI / 10.13039/501100011033 and European Union NextGenerationEU/PRTR
- · Consolidación Investigadora MCIN/AEI/UE CNS2022-135963
- $\cdot \ \mathsf{PID2022\text{-}}138268\mathsf{NB}\text{-}\mathsf{I00}, \ \mathsf{financed} \ \mathsf{by} \ \mathsf{MCIN}/\mathsf{AEI}/10.13039/501100011033 \ \mathsf{and} \ \mathsf{FEDER}, \ \mathsf{UE}$

