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High-dimensional variable selection (large p) requires strong assumptions if
consistent recovery is desired as n — oo

@ Sparsity (bound on truly active variables)
@ Smallest signal (betamin conditions)
@ Correlation between covariates (eigenvalue conditions)
External information often available = variables not exchangeable a priori
@ Biomedicine: gene annotations, clinical history vs genomic markers

@ Transfer learning: findings in related problems/populations (e.g. cancer
type)
@ Causal inference: variables highly correlated with treatment are special

Abundant work showing empirical gains from data integration. Theory lacking
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Graphical model application

Question: in what counties did COVID19 evolve in a coordinated manner? s
co-evolution related to social media, geographical distance and number of flights?

Data: weekly infection rates 01/2020 - 11-2023 (n = 97 weeks) for p = 332 USA
meta-counties

Regress log-infection rate on vaccination, containment measures, pop density,
temperature, time & county fixed effects, AR1 term

@ Model explains 90% of variance (R? = 0.9)

@ Large residual partial correlation across some counties, i.e. COVID rates
systematically higher/lower than predicted
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COVID. Fitted model

Regress partial correlations onto network data: Facebook, distance, flights
@ Model selection: what partial correlations are 07 Prob of 0 vs. networks?

@ Estimation: partial correlations? Their mean / variance vs networks?
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Goal: study theoretical benefits of external info for variable selection.
@ Relax signal strength or sparsity assumptions
@ Improve model selection consistency rates

Consider linear regression with many covariates
y=XB"+e

where € ~ N(0,021), X is n x p, and wlog 0? =1

Goal: variables with non-zero effect,
when p > n?
P _—

David Rossell Universitat Pompeu Fabra & EPushing the limits of variable selection with e OBayes 2025, Athens



Outline

0 The theory
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Key idea: block-informed variable selection

@ Partition variables into blocks using external data.

@ Variables in less sparse or stronger signal blocks penalized less.

B* :(ﬁika SRR 6|*31\’ ﬁ|*51\+11 SRR ﬁI*BMHBzI’ )

Block 1 less sparse Block 2 more sparse

/
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Key idea: block-informed variable selection

For simplicity we consider Ly penalties.
b
S=arg max Uy; Bm) — leij|Mj|
J:
£: log-likelihood; Bu: MLE for model M; kj: penalty for block j=1,...,b

For example, BIC corresponds to k1 = ... = kp = log(n)

Theory applies directly to Zellner's prior on 8y and Binomial or Beta-Binomial
priors on models. Therein, we'd let prior inclusion prob depend on the blocks
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Intuition: conditions for consistent recovery

To attain P(5 = S) — 1 as n — oo, we essentially need

Standard LO: y/log(p — s) = vk = v/ np(X)Bmin — \/log(s)
Block LO:y/log(pj — 5;) = /Rj = /np(X)Bminj — 1/log(s})

pj = size of block j; s; = number of non-zeroes; s = Zf;l Sj. Bmin,j = smallest
non-zero |f;| in block j; p(X) = smallest eigenvalue related to Xs

If range of feasible k or x; empty, consistent recovery is not possible
@ Standard LO: narrow window when s and p — s are large.

@ Smaller p;, larger Bumin,j = easier support recovery.
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Summary of oracle results

If an oracle sets optimal penalties x and x;

@ There are settings where consistent selection possible for block L0, but
impossible for standard L0

@ When both are consistent, block LO has better rates for P(5 = S)
@ Tight bounds shown for both sequence model and regression

Smallest recoverable signals

Standard LO: fin = \/ 2'0g(: =s) | \/2|o§(5)

2log(p; — sj) + \/2|°g(5j)

n n

Standard LO: Bminj < \/
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[llustration

Scenario | 1 (midly informative) 2 (strongly informative) 3 (uninformative)
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e The methods

David Rossell Universitat Pompeu Fabra & EPushing the limits of variable selection with e OBayes 2025, Athens



Bayesian framework

Empirical Bayes method (aka non-oracle) achieves the theoretical improvements
Let's switch to a (more general) Bayesian formulation

@ Variable inclusion indicators ~; = I(8; # 0) ~ Bern(m;)

@ Spike and slab 3 [ v ~ [], _; N(5;:0,8)

@ Meta-covariates w; € R9 for variable j (extends the block idea)

Model prior inclusion probabilities as

logit(m;) = WJ-TG

Idea used by many, e.g. van de Wiel, Te Beest & Miinch. Scand Journ Stat 2018
& references therein
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Empirical vs. full Bayes

We consider empirical Bayes. Posterior model probabilities

p(v | y,8) < p(y | v)p(y | )
b = argmaxp(y | 0)

We use data twice, but p(7 | §) learns for data (e.g. improved consistency with
external data)

Compare to full Bayes, setting a prior p().

p(y | y) o< ply | v)p(v)
p(v) = / p(y | 0)p(0)do

Learning 0 doesn't help model selection. All that matters is marginal prior p(y)

Example: no meta-covariates. If = ~ Beta(a, b) then
p(y) = Beta-Binomial(7y; a, b) (Scott & Berger AOS 2006). Data plays no role in p(~)
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EBayes solution

Issue in obtaining 0: the marginal likelihood is a sum over 2P models

9—argmaxpy|9 ZPY‘V)PVW)

Proposition

Under our specified priors, we can evaluate gradient at linear cost in p

P

Vologp(y | 0) =  wilP(8;i # 0| y,0) — P(8; # 0| 0)]

i=1

@ Gradient evaluation requires an MCMC run at each ¢

@ Analogous expectation-propagation algorithm requires a single run (at 6 = 0)
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Interpretation

Setting gradient to O gives a fixed-point equation.

Illustration: suppose that w; defines b blocks

D PB#0[6)=> P(B#0]y,0)
icB; icB;
A simple algorithm
@ Set / =0, 6(0 =0 (uniform prior p(7) on models)

@ For block b, = 2 37,5 P(8; £ 0] 01)

Q Set 92/) matching 7, (inverse logit)

© Set / =1+ 1, go back to 2 until convergence

David Rossell Universitat Pompeu Fabra & EPushing the limits of variable selection with e OBayes 2025, Athens 16 / 26



Outline

© An application
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An easy problem?

Goal: Effect of T treatments on outcome, adjusting for J controls.

Consider GLM y; ~ p(y; | ni, ¢) for i = 1,..., n with linear predictor
T J
=Yt Y
t=1 j=1

@ a=(ai,...,ar): treatment effects
e 3= (f1,...,5,): control coefficients
@ ¢ dispersion parameter (e.g. o2 for Gaussian outcomes)
Focus is on J > n, fixed T. Issues
@ Standard high-dimensional methods. Often run into under-selection

@ Fixes to avoid under-selection. Often run into over-selection
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Standard high-dim methods (LASSO, BMS etc) usually assume
@ Sparsity
@ All controls to be treated equally (exchangeable)
For finite n, sparsity can lead to under-selection, specially if controls correlated
with treatment
Example. T =1, J =49, n=1000, errors ~ N(0,1)
@ Truly o* =1, Bf =...,85 =1, rest truly zero

@ Treatment correlated with Controls 1-6 (full confounding)

X2 X3 X4 X5 X6 X7 . X49

X1
y v v Vv Vv Vv v v - . -
v v v v vV
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BMA (default Zellner and BetaBin(1,1) priors) includes treatment but no controls
DML/BAC are causal inference methods to avoid omitted variables
BMA-EBayes (our method) learns that there's high confounding
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Fix: encourage including controls that are correlated with the treatment
@ Double LASSO (Belloni, Chernozhukov, Hansen, Rev Econ Stud 2014)

(] Bayesian Adjustment for Confounders (Wang, Parmigiani, Dominici Biometrics
2012)

Theorem: DLASSO's &; is asymptotically Normal :-)

@ Prevents omitted variable biases. Relevant under high confounding between
treatment-controls

@ May over-select = variance inflation. Relevant under low confounding

David Rossell Universitat Pompeu Fabra & EPushing the limits of variable selection with e OBayes 2025, Athens 21/26



Extended example

Same, but now treatment correlated with Controls 7-12 instead of 1-6
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Empirical Bayes

Idea: learn from data whether there's high/low confounding (or neither)

Let w; € RT measure association between control j and T treatments, e.g.
regression coef. of treatment on controls

Method: regress inclusion prob on w;, e.g. logitP(3; # 0) = WJ-TG

Def. Confounding coefficient for treatment t (k.): correlation between w;'s and
true inclusion (8; # 0)

Prop. EBayes estimate (argmax of marginal likelihood) matches the prior and
posterior expectation of k;

E(re | 8) = E(re | v,6)
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Example

Prior inclusion prob vs. control's association with treatment (w;). Note that the
marginal likelihood fit can be a bit “aggressive”
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Integrating external data is very Bayesian. One can push the mathematical limits
for model recovery

@ Milder sparsity/betamin conditions, faster rates of support recovery
@ Empirical Bayes method achieves practical gains

@ Empirical findings in many applications support the idea

Alas, full Bayes cannot attain the gains (unless prior matches the truth)
Computation is feasible
Broader implications

@ Parameter estimation

@ Control of false discoveries in multiple testing

@ Transfer learning
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